ISO 12004-2:2021 Metallic materials — Determination of forming-limit curves for sheet and strip —Part 2: Determination of forming-limit curves in the laboratory

标准简介

Metallic materials — Determination of forming-limit curves for sheet and strip —Part 2: Determination of forming-limit curves in the laboratory由国际标准化组织(International Organization for Standardization,简称ISO)于2021-02发布,适用于全球范围。

标准截图

Metallic materials — Determination of forming-limit curves for sheet and strip —Part 2: Determination of forming-limit curves in the laboratory
Metallic materials — Determination of forming-limit curves for sheet and strip —Part 2: Determination of forming-limit curves in the laboratory(截图)

 

标准文档说明

标准文档类型为Metallic materials — Determination of forming-limit curves for sheet and strip —Part 2: Determination of forming-limit curves in the laboratory高清PDF版本(文字版),标准文档内可进行搜索,可以复制原文,可粘贴。

标准部分原文

Metallic materials — Determination of forming-limit curves for sheet and strip —

Part 2: Determination of forming-limit curves in the laboratory

1 Scope

This document specifies testing conditions for use when constructing a forming-limit curve (FLC) at ambient temperature and using linear strain paths. The material considered is flat, metallic and of thickness between 0,3 mm and 4 mm.

NOTE The limitation in thickness of up to 4 mm is proposed, giving a maximum allowable thickness to the punch diameter ratio.

2 Normative references

There are no normative references in this document.

3 Terms a nd definiti ons

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https:// www .iso .org/ obp

— IEC Electropedia: available at http:// www .electropedia .org/ 4 Symbols For the purposes of this document, the symbols given in Table 1 apply.

Table 1 — Symbols Symbol English French German Unit

e Engineering strain Déformation conventionnelle Technische Dehnung %

True strain Déformation vraie Wahre Dehnung ε (logarithmic strain) (déformation logarithmique) (Umformgrad, —

Formänderung)

ε Major true strain Déformation majeure vraie Grössere Formänderung —

1

ε Minor true strain Déformation mineure vraie Kleinere Formänderung —

2

ε True thickness strain Déformation vraie en épaisseur Dickenformänderung —

3

σ Standard deviation Ecart-type Standardabweichung —

D Punch diameter Diamètre du poinçon Stempeldurchmesser mm

Carrier blank hole Diamètre du trou du contre-flan Lochdurchmesser D mm

bh

diameter des Trägerblechs

X(0), X(1) X-position Position en X X-Position mm

X(m) ....X(n)

Table 1 (continued)

Symbol English French German Unit

f(x) = Best-fit parabola Parabole de meilleur fit Best-Fit-Parabel

2

ax + bx + c

f(x) = Best-fit inverse parabola Parabole inverse de meilleur fit Inverse Best-Fit-Parabel

2

1/(ax + bx + c)

S(0), S(1)...S(5) Section Section Schnitt —

n Number of X-positions Nombre de points en X Nummer der X-Positionen —

Number of the X-posi- Numéro du point en X Nummer der X-Position am m tion at the failure/crack correspondant à la rupture Riss —

position

w Width of the fit window Largeur de la fenêtre de fit Breite des Fit-Fensters mm

t Initial sheet thickness Épaisseur initiale de la tôle Ausgangsblechdicke mm

0

Plastic strain ratio Coefficient d'anisotropie Senkrechte Anisotropie

r —

plastique

Table 2 gives a comparison of the symbols used in different countries.

Table 2 — Comparison of symbols used in different countries

English International German Format Unit

symbol symbol

Engineering strain e ε — %

True strain ε φ Decimal —

(logarithmic strain)

ε = ln(1 + e) — — — —

The symbol typically used for true strain is “ε”, but in German-speaking countries the symbol “φ” is used for true strain. Additionally, in German-speaking countries the symbol “ε” is used to define engineering strains.

The notation for true strain used in this text is “ε” following the typical international definition.

5 Principle

The FLC is intended to represent the almost intrinsic limit of a material in deformation assuming a linear strain path. To determine the FLC accurately, it is necessary to have as nearly linear a strain path as possible.

A deterministic grid of precise dimensions or a stochastic pattern is applied to the flat and undeformed surface of a blank. This blank is then deformed using either the Nakajima or the Marciniak procedure until failure, at which point the test is stopped.

The FLC determination from the measurements should be performed using the “position-dependent” method described in 7.2.

Other methods (e.g. “time-dependent” or “time and position dependent” methods) of FLC determination from the measurements exist. If agreed to by the interested parties, one of the other methods may be used and, if used, shall be indicated in the test report.

The deformation (strain) across the deformed test piece is determined and the measured strains are processed in such a way that the necked or failed area is eliminated from the results. The maximum strain that can be imposed on the material without failing is then determined through interpolation. This maximum of the interpolated curve is defined as the forming limit.

网盘链接

百度网盘:https://pan.baidu.com/s/1wbnjry-8dyU6PZ0mCo4VcA
提取码:x7bt

【温馨提示】大资料ISO是提供信息发布的专业信息类网站,所有内容均由用户发布,不代表本站观点,本站亦不存储所涉及的文件及资料。如有【免费资料】以及【付费资料】,请用户根据自己的需求,自行判断是否需要获取。如有交易诈骗、内容侵权可发送邮件至kf@dzl100.com,我们审查后若发现情况属实,会立即对相关内容进行删除处理。

加载用时:75.5676 毫秒

相关评论

相关文章